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ABSTRACT
 
Introduction: smart cities want smart routing to saves fuel, cuts pollution and to handles traffic in real time. 
This work progresses the existing HEMO algorithm by incorporating eco-friendly parameters. 
Objective: in this paper, we propose two major enhancements to the HEMO-Routing algorithm. First, we 
add real-time traffic adjustment and a detailed energy-consumption model as new objectives. Second, we 
improve optimization by using an Adaptive Genetic Algorithm for broad search and Simultaneous Perturbation 
Stochastic Approximation for fine-tuning. 
Method: we test on the Extended Solomon Dataset (25 road segments with realistic distances, congestion, 
noise, emissions, and speed limits) in MATLAB 2021 on a Windows 11 PC (Intel i5-1135G7, 8 GB RAM). Compared 
to the original, our enhanced method boosts Pareto hypervolume to +12 %, cuts generational distance from 
by –18,8 %, lowers CO₂ from 152,4 g/km to 129,8 g/km (–14,8 %), and trims energy use from 8,75 kWh to 7,87 
kWh (–10,1 %). It also converges in 200 instead of 250 iterations (–20 %), with only a 5.3 % runtime overhead. 
Results: these results show that our extensions deliver practical, eco-friendly routes with minimal extra 
compute, making the approach ideal for real-time smart-city applications.
Conclusions: we made HEMO smarter by adding live traffic and energy-saving goals. With AGA and SPSA, it 
finds better, greener routes faster. Perfect for smart cities, and ready for EVs and bigger setups in future.

Keywords: Eco-friendly Routing; Smart City Traffic; Vehicle Routing Optimization; Emissions Reduction; 
Adaptive Routing.

RESUMEN

Introducción: las ciudades inteligentes buscan rutas inteligentes para ahorrar combustible, reducir la 
contaminación y gestionar el tráfico en tiempo real. Este trabajo mejora el algoritmo HEMO existente al 
incorporar parámetros ecológicos.
Objetivo: en este artículo, proponemos dos mejoras importantes al algoritmo HEMO-Routing. En primer lugar, 
añadimos como nuevos objetivos el ajuste del tráfico en tiempo real y un modelo detallado del consumo 
energético. En segundo lugar, mejoramos la optimización mediante un algoritmo genético adaptativo para 
una búsqueda amplia y una aproximación estocástica de perturbaciones simultáneas para el ajuste fino.
Método: realizamos pruebas con el conjunto de datos Extended Solomon (25 segmentos de carretera con 
distancias realistas, congestión, ruido, emisiones y límites de velocidad) en MATLAB 2021 en un PC con 
Windows 11 (Intel i5-1135G7, 8 GB). En comparación con el método original, nuestro método mejorado 
aumenta el hipervolumen de Pareto a +12 %, reduce la distancia generacional en -18,8 %, disminuye las 
emisiones de CO₂ de 152,4 g/km a 129,8 g/km (-14,8 %) y reduce el consumo de energía de 8,75 kWh a 7,87 
kWh (-10,1 %). Además, converge en 200 iteraciones en lugar de 250 (-20 %), con una sobrecarga de tiempo 
de ejecución de tan solo el 5,3 %.
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Resultados: estos resultados demuestran que nuestras extensiones ofrecen rutas prácticas y ecológicas con 
un mínimo consumo de recursos, lo que hace que este enfoque sea ideal para aplicaciones de ciudades 
inteligentes en tiempo real.
Conclusiones: hemos optimizado HEMO añadiendo tráfico en tiempo real y objetivos de ahorro energético. 
Con AGA y SPSA, encuentra rutas mejores y más ecológicas con mayor rapidez. Perfecto para ciudades 
inteligentes y listo para vehículos eléctricos y configuraciones de mayor tamaño en el futuro.

Palabras clave: Rutas Ecológicas; Tráfico Urbano Inteligente; Optimización de Rutas para Vehículos; Reducción 
de Emisiones; Rutas Adaptativas.

INTRODUCTION
Smart cities need smarter ways to manage traffic and reduce pollution.(1) Many methods for eco-friendly 

routing are already in use, but cities face new challenges daily. Congestion, rising emissions, and noise are 
growing problems in urban areas.(2) Current algorithms often miss important details like real-time traffic or 
sudden road changes. This leaves room for improvement to make routes more practical and effective.(3)

Smart cities face heavy traffic and rising pollution.(4,5) We test on the Extended Solomon Da-taset with 25 
road segments and realistic attributes.(6) Table 1 shows a sample of these seg-ments with distance, congestion 
factor, noise level and speed limit. Figure 1 illustrates the flowchart of our Extended HEMO process.

Existing eco-routing methods help, but new hurdles pop up every day. Congestion, noise and emissions keep 
growing. Most algorithms ignore sudden jams or road changes. They need more tweaks for real-life use.(7,8)

In this paper, we boost the HEMO-Routing algorithm. Figure 2 shows the system architecture. We spot where 
HEMO works well and where it fails. Table 2 gives the traffic-adjustment de-tails. We also adapt for different 
vehicle types and road conditions. These changes make eco-routing smarter and fit for real city roads.

Table 1. Sample Road Segments

Segment Distance 
(km)

Congestion 
Factor

Noise Level 
(dB)

Speed Limit 
(km/h)

1 8,2 0,50 75 60

2 5,6 0,30 65 40

3 12,4 0,70 85 50

4 7,8 0,60 78 70

5 9,5 0,40 72 60

Figure 1. Flowchart of Extended HEMO process
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Figure 2. Overall system architecture of Extended HEMO

Table 2. Sample Extended Dataset Excerpt

Segment Distance 
(km)

Congestion 
Factor

Noise Level 
(dB)

Speed Limit 
(km/h)

1 8,2 0,50 75 60

2 5,6 0,30 65 40

3 12,4 0,70 85 50

4 7,8 0,60 78 70

5 9,5 0,40 72 60

Vehicle routing is evolving with hybrid optimization algorithms that combine different approaches to 
improve efficiency. Metaheuristics like Genetic Algorithms (GA), Particle Swarm Optimization (PSO)(9), and Ant 
Colony Optimization (ACO)(10) are being paired with machine learning tech-niques.(11) Reinforcement learning 
is gaining popularity for its ability to learn from dynamic environments, while deep learning is used to predict 
traffic patterns and optimize routes. These combinations help handle complex problems in real-time, making 
them suitable for smart cities.(12) However, challenges like high computational requirements and algorithm 
convergence still need attention.

Recent research focuses on eco-friendly Vehicle Routing Problems (VRP)(13) with innovative solu-tions. Electric 
vehicle routing is a growing area, addressing unique challenges like battery con-straints and charging station 
availability. Smart charging infrastructure is being developed to optimize energy use. Sustainability metrics 
have expanded beyond CO2 emissions to include factors like noise pollution, traffic congestion, and energy 
consumption. These new trends aim to create a holistic approach to environmentally conscious transportation.

The integration of real-time data is transforming vehicle routing in smart cities. IoT sensors provide live 
updates on traffic, road conditions, and weather. This data helps in making quick, eco-friendly decisions.(14) 
Advanced systems also consider factors like construction work, acci-dents, and dynamic speed limits. Such 
real-time monitoring ensures that vehicles choose the best possible routes, reducing emissions and travel time. 
However, integrating these data sources into routing algorithms is still a challenge due to data quality and 
processing limitations.(15) Table 3 shows review of related research works.

Table 3. Review of Related Research Work
Research Work Description Advantage Research Gap
VRP(13) Study of basic VRP and its 

variants
Helps to model and solve basic 
routing problems

No focus on eco-friendly 
routing

Eco-Friendly Routing(14) Focus on minimizing emissions, 
fuel use, and environmental 
impact

Reduces carbon footprint and 
enhances sustainability

Limited integration with real-
time smart city data

Multi-Objective 
Optimization(16)

Optimization of multiple 
objectives like distance, 
emissions, and fuel use

Balances different goals like 
fuel, distance, and emissions

Most models focus on one or 
two objectives only

Hybrid Optimization(17) Combination of GA, ACO, and 
PSO to solve complex routing 
problems

Improves solution quality and 
speed

Increased complexity with 
multi-objective problems

Smart City Eco-Friendly 
Routing(18)

Integration of IoT and real-
time data for eco-friendly 
routing

Improves real-time decision-
making and reduces emissions

Data integration and 
scalability issues
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METHOD
Type of Study 

This is an experimental study done on computer using real-looking traffic data.

Where & When
We did the project at Usha Martin University, Ranchi, between Jan to Mar 2025.

What We Used
No humans involved—only a traffic dataset called Extended Solomon, with 25 city-like roads (distance, 

jam, noise, speed, etc.).

What We Did (Step by Step)
1.	 Took the old HEMO routing.
2.	 Added live traffic (Tadj) and energy-saving (Eenergy).
3.	 Used AGA to find good routes and SPSA to polish them.
4.	 Ran tests in MATLAB 2021, checked performance.

What We Measured
•	 Distance, emissions, energy use, speed limit breaks.
•	 Compared before & after using charts and numbers.

Data Handling
All results were saved using MATLAB and Excel—simple and clean.

Variables
Input = road info.
Output = green, smart route.

Proposed extensions and enhancements to the hemo-routing algorithm
Integration of Additional Multi-Objectives

To enhance the HEMO algorithm,(19) additional real-world objectives are integrated into the optimization 
framework. These objectives aim to make the routing decisions even more practical and effi-cient in dynamic 
urban environments.

Dynamic Traffic Conditions
Dynamic traffic conditions significantly influence travel time and fuel consumption. Incorporating a real-

time traffic adjustment factor, the travel time Tadj is recalculated as:

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑖𝑖
𝑆𝑆𝑖𝑖 × (1 + 𝐶𝐶𝑖𝑖)

          (1)     

 

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∑
𝑛𝑛

𝑖𝑖=1
(𝑘𝑘 ∙ 𝑑𝑑𝑖𝑖 + ℎ ∙ 𝐶𝐶𝑖𝑖  ∙ 𝑑𝑑𝑖𝑖 )                (2) 

 

𝑍𝑍 = 𝜆𝜆1 ⋅ 𝐷𝐷 + 𝜆𝜆2 ⋅ 𝐸𝐸 + 𝜆𝜆3 ⋅ 𝐹𝐹 + 𝜆𝜆4 ⋅ 𝑁𝑁 + 𝜆𝜆5 ⋅ 𝑆𝑆 + 𝜆𝜆6 ⋅ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜆𝜆7 ⋅ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                (3) 
 

𝑃𝑃𝑐𝑐 = (𝑃𝑃𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚, 𝜎𝜎
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

)                      (4) 

 

𝑃𝑃𝑚𝑚 = (𝑃𝑃𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚, 1 − 𝜎𝜎
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

)              (5) 

 

𝛻𝛻𝛻𝛻 ≈ 𝑍𝑍(𝜃𝜃 + 𝛥𝛥) − 𝑍𝑍(𝜃𝜃 − 𝛥𝛥)
2𝛥𝛥          (6) 

 

𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 − 𝑎𝑎𝑘𝑘 ⋅ 𝛻𝛻𝛻𝛻                        (7) 
 

𝜆𝜆1 ∙ ∑𝑛𝑛
𝑖𝑖=1 𝑑𝑑𝑖𝑖 + 𝜆𝜆2 ∙  𝑒𝑒𝑣𝑣 × ∑𝑛𝑛

𝑖𝑖=1 𝑑𝑑𝑖𝑖 +  𝜆𝜆3 ∙  𝑟𝑟𝑣𝑣 × ∑𝑛𝑛
𝑖𝑖=1 𝑑𝑑𝑖𝑖  + 𝜆𝜆4 ∙  ∑𝑛𝑛

𝑖𝑖=1 𝑁𝑁𝑖𝑖    + 𝜆𝜆5 ∙  ∑𝑛𝑛
𝑖𝑖=1 (𝑆𝑆𝑖𝑖 −

𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) + 𝜆𝜆6 ⋅ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜆𝜆7 ⋅ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒    
 

Where:
di is distance of segment I.
Si is effective speed on segment I.
Ci is congestion factor for segment i (ranges from 0 to 1), this adjustment allows the algorithm to prioritize 

less congested routes dynamically.

Energy Consumption during Routing
Energy consumption is modeled as a function of distance, vehicle type, and road conditions. The energy 

consumed Eenergy is given by:

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑖𝑖
𝑆𝑆𝑖𝑖 × (1 + 𝐶𝐶𝑖𝑖)

          (1)     

 

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∑
𝑛𝑛

𝑖𝑖=1
(𝑘𝑘 ∙ 𝑑𝑑𝑖𝑖 + ℎ ∙ 𝐶𝐶𝑖𝑖  ∙ 𝑑𝑑𝑖𝑖 )                (2) 

 

𝑍𝑍 = 𝜆𝜆1 ⋅ 𝐷𝐷 + 𝜆𝜆2 ⋅ 𝐸𝐸 + 𝜆𝜆3 ⋅ 𝐹𝐹 + 𝜆𝜆4 ⋅ 𝑁𝑁 + 𝜆𝜆5 ⋅ 𝑆𝑆 + 𝜆𝜆6 ⋅ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜆𝜆7 ⋅ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                (3) 
 

𝑃𝑃𝑐𝑐 = (𝑃𝑃𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚, 𝜎𝜎
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

)                      (4) 

 

𝑃𝑃𝑚𝑚 = (𝑃𝑃𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚, 1 − 𝜎𝜎
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

)              (5) 

 

𝛻𝛻𝛻𝛻 ≈ 𝑍𝑍(𝜃𝜃 + 𝛥𝛥) − 𝑍𝑍(𝜃𝜃 − 𝛥𝛥)
2𝛥𝛥          (6) 

 

𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 − 𝑎𝑎𝑘𝑘 ⋅ 𝛻𝛻𝛻𝛻                        (7) 
 

𝜆𝜆1 ∙ ∑𝑛𝑛
𝑖𝑖=1 𝑑𝑑𝑖𝑖 + 𝜆𝜆2 ∙  𝑒𝑒𝑣𝑣 × ∑𝑛𝑛

𝑖𝑖=1 𝑑𝑑𝑖𝑖 +  𝜆𝜆3 ∙  𝑟𝑟𝑣𝑣 × ∑𝑛𝑛
𝑖𝑖=1 𝑑𝑑𝑖𝑖  + 𝜆𝜆4 ∙  ∑𝑛𝑛

𝑖𝑖=1 𝑁𝑁𝑖𝑖    + 𝜆𝜆5 ∙  ∑𝑛𝑛
𝑖𝑖=1 (𝑆𝑆𝑖𝑖 −

𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) + 𝜆𝜆6 ⋅ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜆𝜆7 ⋅ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒    
 

Where:
k is base energy consumption rate (kWh/km).
h is congestion-induced energy consumption multiplier.
Ci is congestion factor for segment I.
di is distance of segment I.
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Incorporating Eenergy into the multi-objective function ensures that routes are chosen based on energy 
efficiency in dynamic traffic scenarios.

Updated Objective Function
The extended optimization function now includes traffic and energy factors:

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑖𝑖
𝑆𝑆𝑖𝑖 × (1 + 𝐶𝐶𝑖𝑖)

          (1)     

 

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∑
𝑛𝑛

𝑖𝑖=1
(𝑘𝑘 ∙ 𝑑𝑑𝑖𝑖 + ℎ ∙ 𝐶𝐶𝑖𝑖  ∙ 𝑑𝑑𝑖𝑖 )                (2) 

 

𝑍𝑍 = 𝜆𝜆1 ⋅ 𝐷𝐷 + 𝜆𝜆2 ⋅ 𝐸𝐸 + 𝜆𝜆3 ⋅ 𝐹𝐹 + 𝜆𝜆4 ⋅ 𝑁𝑁 + 𝜆𝜆5 ⋅ 𝑆𝑆 + 𝜆𝜆6 ⋅ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜆𝜆7 ⋅ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                (3) 
 

𝑃𝑃𝑐𝑐 = (𝑃𝑃𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚, 𝜎𝜎
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

)                      (4) 

 

𝑃𝑃𝑚𝑚 = (𝑃𝑃𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚, 1 − 𝜎𝜎
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

)              (5) 

 

𝛻𝛻𝛻𝛻 ≈ 𝑍𝑍(𝜃𝜃 + 𝛥𝛥) − 𝑍𝑍(𝜃𝜃 − 𝛥𝛥)
2𝛥𝛥          (6) 

 

𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 − 𝑎𝑎𝑘𝑘 ⋅ 𝛻𝛻𝛻𝛻                        (7) 
 

𝜆𝜆1 ∙ ∑𝑛𝑛
𝑖𝑖=1 𝑑𝑑𝑖𝑖 + 𝜆𝜆2 ∙  𝑒𝑒𝑣𝑣 × ∑𝑛𝑛

𝑖𝑖=1 𝑑𝑑𝑖𝑖 +  𝜆𝜆3 ∙  𝑟𝑟𝑣𝑣 × ∑𝑛𝑛
𝑖𝑖=1 𝑑𝑑𝑖𝑖  + 𝜆𝜆4 ∙  ∑𝑛𝑛

𝑖𝑖=1 𝑁𝑁𝑖𝑖    + 𝜆𝜆5 ∙  ∑𝑛𝑛
𝑖𝑖=1 (𝑆𝑆𝑖𝑖 −

𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) + 𝜆𝜆6 ⋅ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜆𝜆7 ⋅ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒    
 

Where:
Z is overall objective function.
D is total travel distance.
E is Total emissions.
F is total fuel consumption.
N is total noise level.
S is Speed violations and λ1, λ2, λ3, λ4, λ5  are weight coefficients.
λ6, λ7 are weight coefficients for dynamic traffic and energy consumption objectives, respectively.

Algorithmic Improvements in the Extended HEMO Routing Algorithm
The Extended HEMO Routing Algorithm incorporates Adaptive Genetic Algorithm (AGA)(20) and Simultaneous 

Perturbation Stochastic Approximation (SPSA)(21) to enhance optimization efficiency and scalability in addressing 
eco-friendly routing objectives. Below are the improvements:

Adaptive Genetic Algorithm
AGA dynamically adjusts the Genetic Algorithm’s parameters, such as crossover and mutation rates, to 

maintain a balance between exploration and exploitation.

Adjustments
Crossover Rate Pc: dynamically increases during higher population diversity to explore more solution space.

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑖𝑖
𝑆𝑆𝑖𝑖 × (1 + 𝐶𝐶𝑖𝑖)

          (1)     

 

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∑
𝑛𝑛

𝑖𝑖=1
(𝑘𝑘 ∙ 𝑑𝑑𝑖𝑖 + ℎ ∙ 𝐶𝐶𝑖𝑖  ∙ 𝑑𝑑𝑖𝑖 )                (2) 

 

𝑍𝑍 = 𝜆𝜆1 ⋅ 𝐷𝐷 + 𝜆𝜆2 ⋅ 𝐸𝐸 + 𝜆𝜆3 ⋅ 𝐹𝐹 + 𝜆𝜆4 ⋅ 𝑁𝑁 + 𝜆𝜆5 ⋅ 𝑆𝑆 + 𝜆𝜆6 ⋅ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜆𝜆7 ⋅ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                (3) 
 

𝑃𝑃𝑐𝑐 = (𝑃𝑃𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚, 𝜎𝜎
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

)                      (4) 

 

𝑃𝑃𝑚𝑚 = (𝑃𝑃𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚, 1 − 𝜎𝜎
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

)              (5) 

 

𝛻𝛻𝛻𝛻 ≈ 𝑍𝑍(𝜃𝜃 + 𝛥𝛥) − 𝑍𝑍(𝜃𝜃 − 𝛥𝛥)
2𝛥𝛥          (6) 

 

𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 − 𝑎𝑎𝑘𝑘 ⋅ 𝛻𝛻𝛻𝛻                        (7) 
 

𝜆𝜆1 ∙ ∑𝑛𝑛
𝑖𝑖=1 𝑑𝑑𝑖𝑖 + 𝜆𝜆2 ∙  𝑒𝑒𝑣𝑣 × ∑𝑛𝑛

𝑖𝑖=1 𝑑𝑑𝑖𝑖 +  𝜆𝜆3 ∙  𝑟𝑟𝑣𝑣 × ∑𝑛𝑛
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𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) + 𝜆𝜆6 ⋅ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜆𝜆7 ⋅ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒    
 

Where:
Pc,max is maximum allowable crossover rate.
σ is current population diversity
σmax is maximum observed diversity.
Mutation Rate Pm: reduces as the population converges to fine-tune solutions.

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑖𝑖
𝑆𝑆𝑖𝑖 × (1 + 𝐶𝐶𝑖𝑖)

          (1)     

 

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∑
𝑛𝑛

𝑖𝑖=1
(𝑘𝑘 ∙ 𝑑𝑑𝑖𝑖 + ℎ ∙ 𝐶𝐶𝑖𝑖  ∙ 𝑑𝑑𝑖𝑖 )                (2) 

 

𝑍𝑍 = 𝜆𝜆1 ⋅ 𝐷𝐷 + 𝜆𝜆2 ⋅ 𝐸𝐸 + 𝜆𝜆3 ⋅ 𝐹𝐹 + 𝜆𝜆4 ⋅ 𝑁𝑁 + 𝜆𝜆5 ⋅ 𝑆𝑆 + 𝜆𝜆6 ⋅ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜆𝜆7 ⋅ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                (3) 
 

𝑃𝑃𝑐𝑐 = (𝑃𝑃𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚, 𝜎𝜎
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

)                      (4) 

 

𝑃𝑃𝑚𝑚 = (𝑃𝑃𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚, 1 − 𝜎𝜎
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

)              (5) 

 

𝛻𝛻𝛻𝛻 ≈ 𝑍𝑍(𝜃𝜃 + 𝛥𝛥) − 𝑍𝑍(𝜃𝜃 − 𝛥𝛥)
2𝛥𝛥          (6) 

 

𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 − 𝑎𝑎𝑘𝑘 ⋅ 𝛻𝛻𝛻𝛻                        (7) 
 

𝜆𝜆1 ∙ ∑𝑛𝑛
𝑖𝑖=1 𝑑𝑑𝑖𝑖 + 𝜆𝜆2 ∙  𝑒𝑒𝑣𝑣 × ∑𝑛𝑛

𝑖𝑖=1 𝑑𝑑𝑖𝑖 +  𝜆𝜆3 ∙  𝑟𝑟𝑣𝑣 × ∑𝑛𝑛
𝑖𝑖=1 𝑑𝑑𝑖𝑖  + 𝜆𝜆4 ∙  ∑𝑛𝑛

𝑖𝑖=1 𝑁𝑁𝑖𝑖    + 𝜆𝜆5 ∙  ∑𝑛𝑛
𝑖𝑖=1 (𝑆𝑆𝑖𝑖 −

𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) + 𝜆𝜆6 ⋅ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜆𝜆7 ⋅ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒    
 

Where:
Pm,min is minimum allowable mutation rate., σ and σmax is same as above.

Steps in the Main Loop:
1.	 Compute σ for the current population.
2.	 Update Pc and Pm using the formulas above.
3.	 Evolution Process:

•	 Perform selection, crossover, and mutation using adjusted rates.
•	 Evaluate the fitness function (Z) for new population members.

Simultaneous Perturbation Stochastic Approximation 
SPSA approximates gradients without explicitly computing them, making it efficient for complex, multi-

dimensional optimization problems.
Gradient Approximation: SPSA estimates the gradient ∇Z of the cost function Z using stochastic perturbations:
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𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑖𝑖
𝑆𝑆𝑖𝑖 × (1 + 𝐶𝐶𝑖𝑖)

          (1)     

 

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∑
𝑛𝑛

𝑖𝑖=1
(𝑘𝑘 ∙ 𝑑𝑑𝑖𝑖 + ℎ ∙ 𝐶𝐶𝑖𝑖  ∙ 𝑑𝑑𝑖𝑖 )                (2) 

 

𝑍𝑍 = 𝜆𝜆1 ⋅ 𝐷𝐷 + 𝜆𝜆2 ⋅ 𝐸𝐸 + 𝜆𝜆3 ⋅ 𝐹𝐹 + 𝜆𝜆4 ⋅ 𝑁𝑁 + 𝜆𝜆5 ⋅ 𝑆𝑆 + 𝜆𝜆6 ⋅ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜆𝜆7 ⋅ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                (3) 
 

𝑃𝑃𝑐𝑐 = (𝑃𝑃𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚, 𝜎𝜎
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)                      (4) 

 

𝑃𝑃𝑚𝑚 = (𝑃𝑃𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚, 1 − 𝜎𝜎
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

)              (5) 

 

𝛻𝛻𝛻𝛻 ≈ 𝑍𝑍(𝜃𝜃 + 𝛥𝛥) − 𝑍𝑍(𝜃𝜃 − 𝛥𝛥)
2𝛥𝛥          (6) 

 

𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 − 𝑎𝑎𝑘𝑘 ⋅ 𝛻𝛻𝛻𝛻                        (7) 
 

𝜆𝜆1 ∙ ∑𝑛𝑛
𝑖𝑖=1 𝑑𝑑𝑖𝑖 + 𝜆𝜆2 ∙  𝑒𝑒𝑣𝑣 × ∑𝑛𝑛

𝑖𝑖=1 𝑑𝑑𝑖𝑖 +  𝜆𝜆3 ∙  𝑟𝑟𝑣𝑣 × ∑𝑛𝑛
𝑖𝑖=1 𝑑𝑑𝑖𝑖  + 𝜆𝜆4 ∙  ∑𝑛𝑛

𝑖𝑖=1 𝑁𝑁𝑖𝑖    + 𝜆𝜆5 ∙  ∑𝑛𝑛
𝑖𝑖=1 (𝑆𝑆𝑖𝑖 −

𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) + 𝜆𝜆6 ⋅ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜆𝜆7 ⋅ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒    
 

Where: 
∇ is Perturbation vector (randomly generated for each iteration).
θ is current solution state.

Update Rule: the solution is iteratively updated as:

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑖𝑖
𝑆𝑆𝑖𝑖 × (1 + 𝐶𝐶𝑖𝑖)

          (1)     

 

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∑
𝑛𝑛

𝑖𝑖=1
(𝑘𝑘 ∙ 𝑑𝑑𝑖𝑖 + ℎ ∙ 𝐶𝐶𝑖𝑖  ∙ 𝑑𝑑𝑖𝑖 )                (2) 

 

𝑍𝑍 = 𝜆𝜆1 ⋅ 𝐷𝐷 + 𝜆𝜆2 ⋅ 𝐸𝐸 + 𝜆𝜆3 ⋅ 𝐹𝐹 + 𝜆𝜆4 ⋅ 𝑁𝑁 + 𝜆𝜆5 ⋅ 𝑆𝑆 + 𝜆𝜆6 ⋅ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜆𝜆7 ⋅ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                (3) 
 

𝑃𝑃𝑐𝑐 = (𝑃𝑃𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚, 𝜎𝜎
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

)                      (4) 

 

𝑃𝑃𝑚𝑚 = (𝑃𝑃𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚, 1 − 𝜎𝜎
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

)              (5) 

 

𝛻𝛻𝛻𝛻 ≈ 𝑍𝑍(𝜃𝜃 + 𝛥𝛥) − 𝑍𝑍(𝜃𝜃 − 𝛥𝛥)
2𝛥𝛥          (6) 

 

𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 − 𝑎𝑎𝑘𝑘 ⋅ 𝛻𝛻𝛻𝛻                        (7) 
 

𝜆𝜆1 ∙ ∑𝑛𝑛
𝑖𝑖=1 𝑑𝑑𝑖𝑖 + 𝜆𝜆2 ∙  𝑒𝑒𝑣𝑣 × ∑𝑛𝑛

𝑖𝑖=1 𝑑𝑑𝑖𝑖 +  𝜆𝜆3 ∙  𝑟𝑟𝑣𝑣 × ∑𝑛𝑛
𝑖𝑖=1 𝑑𝑑𝑖𝑖  + 𝜆𝜆4 ∙  ∑𝑛𝑛

𝑖𝑖=1 𝑁𝑁𝑖𝑖    + 𝜆𝜆5 ∙  ∑𝑛𝑛
𝑖𝑖=1 (𝑆𝑆𝑖𝑖 −

𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) + 𝜆𝜆6 ⋅ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜆𝜆7 ⋅ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒    
 

Where:
ak is learning rate, which decreases over iterations to ensure convergence.

Steps in the Main Loop
1.	 Randomly generate a perturbation vector Δ.
2.	 Compute Z(θ+Δ) and Z(θ-Δ).
3.	 Estimate ∇Z using the above formula.
4.	 Update θ using the update rule.
5.	 Continue until convergence criteria are met.

Integration of AGA and SPSA into the Extended HEMO Algorithm
•	 Initialization Phase:

1.	 Set Pc,max), Pm,min, σmax , and initial learning rate a0.
2.	 Prepare SPSA parameters, including the perturbation scale and decay schedule for ak.

•	 Optimization Phase:
1.	 At each iteration, calculate the cost function Z based on the current route.
2.	 Use AGA to generate diverse solutions.
3.	 Apply SPSA to refine the solutions further by minimizing the cost function Z.
4.	 Ensure the algorithm satisfies constraints (e.g., emissions, noise, and speed limits) and 

updates road segment selection dynamically.

•	 Termination:
1.	 Stop when the improvement in Z across iterations is negligible or after a predefined 

number of iterations.

By integrating AGA and SPSA, the Extended HEMO Routing Algorithm achieves a robust balance between 
exploration and precision in optimizing eco-friendly routing objectives.

Extended HEMO Routing Algorithm with AGA and SPSA
The proposed extended HEMO algorithm is shown in algorithm 1. AGA drives the global search by maintaining 

diversity in the population and adaptively refining routes. SPSA complements AGA by performing efficient local 
optimization with minimal computational overhead, focusing on fine-tuning routes within each generation. 
Together, these methods enhance HEMO’s ability to handle large, multi-objective, and dynamic optimization 
problems effectively. 

Algorithm 1: Extended HEMO
Input:

•	 Road network with segments i=1,2,…,n.
•	 Vehicle parameters: speed Si, fuel consumption rate rv, emission factors ev.
•	 Congestion factors Ci, noise levels Ni, emission constraints Emax, and distance di.
•	 Additional parameters for energy consumption and dynamic traffic adjustment.

Output:
•	 Optimal route that minimizes the weighted sum of travel distance, emissions, fuel consumption, 

noise, speed violations, and energy consumption.
Initialization:
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1.	 Initialize weights: λ1, λ2, λ3, λ4, λ5, λ6, λ7
2.	 Set parameters: emission factor ev, fuel consumption rate rv, maximum permissible noise Nmax, 

and speed limits Slimit, energy consumption parameters k (base rate), h (congestion multiplier).
3.	 Initialize road network: distances di, congestion factors Ci, and noise levels Ni.
4.	 Set initial state with all road network parameters.
5.	 Initialize the AGA and SPSA frameworks:

•	 For AGA: initialize population of routes, set mutation and crossover rates, and establish 
adaptability criteria.

•	 For SPSA: set initial parameters for gradient-free optimization, including perturbation 
magnitudes.

Main Loop: While route is not optimized, do:
1.	 Step 1: Calculate Total Travel Distance as =∑i=1

n di. 
2.	 Step 2: Calculate Total Emissions as =ev ×∑i=1

n di.
3.	 Step 3: Calculate Total Fuel Consumption as F =rv ×∑i=1

n di.
4.	 Step 4: Calculate Energy Consumption as Eenergy=∑i=1

n di.(k∙di+h∙Ci ∙di)
5.	 Step 5: Ensure Noise Constraint Verify Ni≤Nmax for all road segments.
6.	 Step 6: Ensure Emission Constraint Verify Ei≤Emax for emission-constrained segments.
7.	 Step 7: Adjust Travel Time for Dynamic Traffic as Tadj=di/(Si×(1+Ci)
8.	 Step 8: Evaluate Total Cost Function 

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑖𝑖
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)                      (4) 

 

𝑃𝑃𝑚𝑚 = (𝑃𝑃𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚, 1 − 𝜎𝜎
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𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 − 𝑎𝑎𝑘𝑘 ⋅ 𝛻𝛻𝛻𝛻                        (7) 
 

𝜆𝜆1 ∙ ∑𝑛𝑛
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9.	 Step 9: Update the Route
Using AGA: 

Selection: evaluate fitness based on Z and select the top-performing routes.
Crossover: Combine selected routes to generate offspring, maintaining diversity.
Mutation: introduce adaptive mutations to avoid premature convergence.
Adaptation: dynamically adjust mutation and crossover rates based on solution progress.

Using SPSA:
Perturbation: apply small random changes to route parameters.
Gradient-Free Update: estimate gradient of Z with respect to route parameters using the 
perturbations.
Optimization: refine the route selection by adjusting parameters to minimize Z

End While
End of Algorithm

RESULTS
We used the Extended Solomon Dataset (n = 25 segments) with eco‐parameters: distances (2–15 km), 

congestion (0,2–0,8), noise (60–90 dB), emission factor (200 g CO₂/km), fuel rate (0,15 kWh/km), max noise 
80 dB, speed limits 40–80 km/h. A small excerpt appears in table 3.

We implemented E-HEMO in MATLAB 2021 on Windows 11 (Intel i5-1135G7 @ 2,42 GHz, 8 GB RAM). We 
tested two generic Solomon-based networks:

•	 Urban testbed: 50 nodes, 120 edges with simulated dynamic traffic, emissions, noise, and speed‐
limit attributes.

•	 City-center testbed: 35 nodes, 80 edges with realistic congestion, noise, emission, and energy 
parameters.

Table 4. Result Hemo vs Extended Hemo
Metric Baseline HEMO E-HEMO Improvement
Hypervolume (higher better) 0,632 0,708 +12,0 %
Generational Distance (lower better) 0,085 0,069 –18,8 %
Avg. CO₂ Emissions (g/km) 152,4 129,8 –14,8 %
Avg. Energy Consumed (kWh) 8,75 7,87 –10,1 %
Convergence Iterations 250 200 –20,0 %
Runtime Overhead (%) — +5,3 —
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We measured hypervolume, generational distance, CO₂ emissions, energy consumption, convergence 
iterations, and runtime overhead in table 4.

Key observations
•	 E-HEMO’s Pareto front is tighter and more evenly spread given in figure 3.
•	 CO₂ emissions drop up to 15 %, energy use up to 10 %.
•	 Convergence needs ~20 % fewer iterations.
•	 Runtime overhead is only 5,3 %, acceptable for near real-time use.

Figure 3. Pareto Front Comparison

DISCUSSION 
In this work, we tested the Extended HEMO‐Routing (E-HEMO) on the Extended Solomon Dataset in MATLAB 

2021 (Windows 11, Intel i5-1135G7, 8 GB RAM). We saw the Pareto hypervolume go up by 12 %, CO₂ emissions 
drop by 15 %, energy use fall by 10 %, and convergence speed improve by 20 %. All this with just a 5 % extra 
runtime. These results show that adding real-time traffic and energy objectives, plus the AGA + SPSA combo, 
gives practical, eco-friendly routes for any smart-city setting.

Next, we can extend E-HEMO to multi-vehicle and multi-depot scenarios and bring in platooning effects. We 
can integrate EV battery limits and charging-station scheduling. A streaming version can take live IoT feeds and 
update routes on the fly. We can build a multi-modal planner for buses, cycles, walking, and cars together. To 
handle surprises, we’ll add chance-constraints for accidents and weather. Finally, we can parallelise AGA and 
SPSA on GPUs or cloud servers to run city-wide, real-time optimisation.

CONCLUSIONS
We made HEMO smarter by adding live traffic and energy-saving goals. With AGA and SPSA, it finds 

better, greener routes faster. Perfect for smart cities, and ready for EVs and bigger setups in future. 
Next, we can extend E-HEMO to multi-vehicle and multi-depot scenarios and bring in platooning effects. We 
can integrate EV battery limits and charging-station scheduling. A streaming version can take live IoT feeds and 
update routes on the fly. We can build a multi-modal planner for buses, cycles, walking, and cars together. To 
handle surprises, we’ll add chance-constraints for accidents and weather. Finally, we can parallelise AGA and 
SPSA on GPUs or cloud servers to run city-wide, real-time optimisation.
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